Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of optogenetic microdevices.

Identifieur interne : 001D81 ( Main/Exploration ); précédent : 001D80; suivant : 001D82

Evolution of optogenetic microdevices.

Auteurs : Rajas P. Kale [États-Unis] ; Abbas Z. Kouzani [Australie] ; Ken Walder [Australie] ; Michael Berk [Australie] ; Susannah J. Tye [États-Unis]

Source :

RBID : pubmed:26158015

Abstract

Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices.

DOI: 10.1117/1.NPh.2.3.031206
PubMed: 26158015
PubMed Central: PMC4481025


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of optogenetic microdevices.</title>
<author>
<name sortKey="Kale, Rajas P" sort="Kale, Rajas P" uniqKey="Kale R" first="Rajas P" last="Kale">Rajas P. Kale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia ; Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia ; Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905</wicri:regionArea>
<wicri:noRegion>Minnesota 55905</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kouzani, Abbas Z" sort="Kouzani, Abbas Z" uniqKey="Kouzani A" first="Abbas Z" last="Kouzani">Abbas Z. Kouzani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216</wicri:regionArea>
<wicri:noRegion>Victoria 3216</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Medicine , 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University School of Medicine , 75 Pigdons Road, Waurn Ponds, Victoria 3216</wicri:regionArea>
<wicri:noRegion>Victoria 3216</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berk, Michael" sort="Berk, Michael" uniqKey="Berk M" first="Michael" last="Berk">Michael Berk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University , IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia ; Orygen , National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia ; University of Melbourne , Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University , IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia ; Orygen , National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia ; University of Melbourne , Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052</wicri:regionArea>
<wicri:noRegion>Parkville Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tye, Susannah J" sort="Tye, Susannah J" uniqKey="Tye S" first="Susannah J" last="Tye">Susannah J. Tye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905</wicri:regionArea>
<wicri:noRegion>Minnesota 55905</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26158015</idno>
<idno type="pmid">26158015</idno>
<idno type="doi">10.1117/1.NPh.2.3.031206</idno>
<idno type="pmc">PMC4481025</idno>
<idno type="wicri:Area/Main/Corpus">001C21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C21</idno>
<idno type="wicri:Area/Main/Curation">001C21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C21</idno>
<idno type="wicri:Area/Main/Exploration">001C21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of optogenetic microdevices.</title>
<author>
<name sortKey="Kale, Rajas P" sort="Kale, Rajas P" uniqKey="Kale R" first="Rajas P" last="Kale">Rajas P. Kale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia ; Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia ; Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905</wicri:regionArea>
<wicri:noRegion>Minnesota 55905</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kouzani, Abbas Z" sort="Kouzani, Abbas Z" uniqKey="Kouzani A" first="Abbas Z" last="Kouzani">Abbas Z. Kouzani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216</wicri:regionArea>
<wicri:noRegion>Victoria 3216</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University School of Medicine , 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University School of Medicine , 75 Pigdons Road, Waurn Ponds, Victoria 3216</wicri:regionArea>
<wicri:noRegion>Victoria 3216</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berk, Michael" sort="Berk, Michael" uniqKey="Berk M" first="Michael" last="Berk">Michael Berk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deakin University , IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia ; Orygen , National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia ; University of Melbourne , Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University , IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia ; Orygen , National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia ; University of Melbourne , Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052</wicri:regionArea>
<wicri:noRegion>Parkville Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tye, Susannah J" sort="Tye, Susannah J" uniqKey="Tye S" first="Susannah J" last="Tye">Susannah J. Tye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905</wicri:regionArea>
<wicri:noRegion>Minnesota 55905</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neurophotonics</title>
<idno type="ISSN">2329-423X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26158015</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2329-423X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Neurophotonics</Title>
<ISOAbbreviation>Neurophotonics</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of optogenetic microdevices.</ArticleTitle>
<Pagination>
<MedlinePgn>031206</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1117/1.NPh.2.3.031206</ELocationID>
<Abstract>
<AbstractText>Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kale</LastName>
<ForeName>Rajas P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia ; Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kouzani</LastName>
<ForeName>Abbas Z</ForeName>
<Initials>AZ</Initials>
<AffiliationInfo>
<Affiliation>Deakin University School of Engineering , Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walder</LastName>
<ForeName>Ken</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Deakin University School of Medicine , 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berk</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Deakin University , IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia ; Orygen , National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia ; University of Melbourne , Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tye</LastName>
<ForeName>Susannah J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Mayo Clinic Department of Psychiatry and Psychology , 200 First Street SW, Rochester, Minnesota 55905, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neurophotonics</MedlineTA>
<NlmUniqueID>101632875</NlmUniqueID>
<ISSNLinking>2329-423X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">behavioral tests</Keyword>
<Keyword MajorTopicYN="N">fiber coupling</Keyword>
<Keyword MajorTopicYN="N">neurology</Keyword>
<Keyword MajorTopicYN="N">optogenetics</Keyword>
<Keyword MajorTopicYN="N">portable microdevices</Keyword>
<Keyword MajorTopicYN="N">psychiatry</Keyword>
<Keyword MajorTopicYN="N">tethering</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26158015</ArticleId>
<ArticleId IdType="doi">10.1117/1.NPh.2.3.031206</ArticleId>
<ArticleId IdType="pii">14086VSSR</ArticleId>
<ArticleId IdType="pmc">PMC4481025</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Neurophysiol. 2002 Sep;113(9):1391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Feb;5(2):247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20134425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Jan;8(1):26-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol Paris. 2006 Mar-May;99(2-3):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2013 Jan;16(1):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 2011 Jun;58(6):1742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jul 29;466(7306):622-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20613723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2009 Apr 30;62(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2012 Nov 29;10:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23194414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Dec 04;15(1):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2000 Nov;111(11):1916-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11068223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jan 25;265(3):1253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2104837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2012 Jun;9(3):036004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22510375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2013 May 20;1511:46-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23031636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1971 Mar 5;171(3974):907-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5541653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2011 May;70(1):124-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2007 Apr 16;179(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17306892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Stimul. 2011 Jan;4(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21255749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2002 Jun 21;47(12):2059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2010 Feb;7(1):16004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Psychiatry Neurosci. 2012 Jan;37(1):4-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22182794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Dec 18;9(2):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22179551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2006 Dec;3(4):306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 2010 Nov;303(5):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21033283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 7;451(7179):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5662-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24111022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hippocampus. 2006;16(4):345-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16302229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2009 Jun;6(3):035007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Methods. 2014 Apr 30;227:132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24613796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2012 Mar 25;15(5):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 15;450(7168):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc SPIE Int Soc Opt Eng. 2008;6854:68540H</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18458792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2013 Feb 21;13(4):579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23306183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2011 Dec;15(12):592-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2011 Apr;17(4):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21353638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1475-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2009 Oct;6(5):056003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Oct;3(10):785-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23853385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2008 Jun;11(6):631-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychopharmacology (Berl). 2011 May;215(1):49-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21161187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Apr;8(4):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15750589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 2013 Jan;60(1):225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22968201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Jun 18;82(6):1245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24881834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 1982 Feb;29(2):129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7056556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2005 Sep;195(1):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jan 3;451(7174):61-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2012 Feb;9(1):016001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 17;324(5925):354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Dec 26;27(52):14231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Opt. 1999 Aug 1;38(22):4939-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 1976;35(3):187-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">782142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 29;475(7356):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21716290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2007 Sep;4(3):S143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2003 Sep 5;983(1-2):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychopharmacology. 2009 Jun;34(7):1685-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19145223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Apr 13;31(15):5721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biomed Eng. 2009;11:1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2011 Aug;8(4):046021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21701058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Integr Neurosci. 2015 Feb 10;9:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2004 Jun;156(3):274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Eng. 2007 Jun;4(2):96-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Behav Neurosci. 2014 Apr 01;8:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24744708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2005 Dec 8;48(5):797-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 7;463(7277):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Apr 12;340(6129):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Mar;5(3):439-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Psychiatry. 2015 May;172(5):412-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25930130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Microdevices. 2013 Dec;15(6):973-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23832644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Dec;8(12):2413-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kale, Rajas P" sort="Kale, Rajas P" uniqKey="Kale R" first="Rajas P" last="Kale">Rajas P. Kale</name>
</noRegion>
<name sortKey="Tye, Susannah J" sort="Tye, Susannah J" uniqKey="Tye S" first="Susannah J" last="Tye">Susannah J. Tye</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Kouzani, Abbas Z" sort="Kouzani, Abbas Z" uniqKey="Kouzani A" first="Abbas Z" last="Kouzani">Abbas Z. Kouzani</name>
</noRegion>
<name sortKey="Berk, Michael" sort="Berk, Michael" uniqKey="Berk M" first="Michael" last="Berk">Michael Berk</name>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26158015
   |texte=   Evolution of optogenetic microdevices.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26158015" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020